ON COMPACTIFICATION OF METRIC SPACES*

BY

M. REICHAW-REICHBACH

ABSTRACT

If $f: X \to X^*$ is a homeomorphism of a metric separable space X into a compact metric space X^* such that $f(X) = X^*$, then the pair (f, X^*) is called a metric compactification of X. An absolute G_{δ} -space (F_{σ} -space) X is said to be of the first kind, if there exists a metric compactification (f, X^*) of X such that $f(X) = \bigcap_{i=1}^{\infty} G_i$, where G_i are sets open in X^* and $\dim[Fr(G_i)] < \dim X$. $\lim_{i=1}$ *(Fr(G_i)* being the boundary of G_i and dim X--the dimension of X). An absolute G_{δ} -space (F_{σ} -space), which is not of the first kind, is said to be of the second kind. In the present paper spaces which are both absolute G_{δ} and F_{σ} -spaces of the second kind are constructed for any positive finite dimension, a problem related to one of A. Lelek in [11] is solved, and a sufficient condition on X is given under which dim $[X^* - f(X)] \geq k$, for any metric compactification (f, X^*) of X, where $k \leq \dim X$ is a given number.

Introduction. Let $f: X \to X^*$ be a homeomorphism of a *separable metric* space X into a compact *metric* space X^* , such that $\overline{f(X)} = X^*$. The pair (f, X^*) is then called a *metric compactification* of X. If X is an absolute G_3 -space (F_a -space) (i.e. a G_{δ} -set (F_{σ} -set) in some compact space), then X is said to be of the first kind (cf. [6]) provided there exists a compactification (f, X^*) of X such that $f(X) = \bigcap_{i=1}^{\infty} G_i$, where G_i are sets open in X^* and dim $\big[Fr(G_i) \big] < \dim X$, $i = 1, 2, \dots$. (Fr(G_i) denotes the boundary of G_i, and dim X the dimension of X in the sense of Menger-Urysohn.) An absolute G_{δ} -space (F_{σ} -space) which is not of the first kind is said to be of the second kind. The aim of the present paper is: (i) to construct, for any positive finite dimension, spaces X which are both absolute F_{σ} and absolute G_{δ} -spaces of the second kind; (ii) to solve a problem related to one of A. Lelek in [11]; and (iii) to give a sufficient condition on X , such that, for a given $k \leq \dim X$, we have $\dim [X^* - f(X)] \geq k$ for every compactification (f, X^*) of X .

The paper consists of four parts. In Section I some known compactifications are mentioned; in Section II several problems concerning compactifications are

Received May 22, 1963

^{*} This research has been sponsored by the U. S. Navy through the Office of Naval Research under contract No. 62558-3315.

posed. Facts on coverings are quoted in Section III. Finally, Section IV contains a solution of the problems(1) posed in Section II.

I. SOME COMPACTIFICATIONS OF METRIC SPACES

1.1. Let X be a given topological space. Let $X^* = X \cup (x^*)$, where $x^* \notin X$ is an additional point, and let us define the toppology in X^* by taking as open sets all sets open in X and all subsets U of X^* , such that $X^* - U$ is a closed compact subset of X . Then the theorem of Alexandroff states:

(1) The space X^* is a compact topological space and X^* is a Hausdorff space if and only if X is a locally compact Hausdorff space(2).

The space X^* is called the one-point compactification of the space X.

A topological embedding is usually allowed rather than insist that X actually be a subset of X^* .

Thus by a compactification of a space X a pair (f, X^*) is understood, such that $f: X \to X^*$ is a homeomorphism of X into a compact space X^* and $\overline{f(X)} = X^*$ (i.e. the image $f(X)$ of X is dense in X^*). In this sense the one-point compactification of a non compact space X is a pair (i, X^*) where $i: X \to X^*$ is the identity mapping and $\overline{i(X)} = X^* = X \cup (x^*)$.

Another compactification of a topological space X is the Stone-Cech compactification (e, $\beta(X)$)(³). This compactification is defined as follows:

Let us take the set $F(X)$ of all continuous functions $f: X \to J$ mapping X into the interval $J = [0,1]$ and the product $J^{F(X)}$ with the Tychonoff topology. Let us define the mapping $e: X \to J^{F(\bar{X})}$ by correlating with each point $x \in X$ the point $e(x)$ whose f-th coordinate is $f(x)$, for each $f \in F(X)$. The mapping $e(x)$ is a continuous mapping of X into $J^{F(X)}$, and in the case when X is a completely regular T₁-space it turns out to be a homeomorphism. In this case we define $\beta(X)$ by by $\beta(X) = \overline{e(X)}$ and the pair $(e, \beta(X))$ is called the Stone-Cech compactification of X.

Let us note that:

(2) If $(e, \beta(X))$ is the Stone-Cech compactification of a completely regular T_1 -space X and $f: X \to Y$ is a continuous mapping of X into a compact Hausdorff space Y, then $f[e^{-1}(x)]$ has a continuous extension on $\beta(X)$ into $Y(4)$.

Numerous other compactifications were constructed for various purposes. One of them, used in the dimension theory, is the Wallman compactification $(\Phi, w(X))$. It turns out to be topologically equivalent to the Stone-Cech compactification provided $w(X)$ is a Hausdorff space(⁵).

⁽⁰ I learned recently that some problems considered in the present study have been solved by A. Lelek in an entirely different way (not published).

⁽²⁾ See [5], p. 150, also [3], p. 73.

⁽³⁾ See [5], p. 152. For properties of the Stone-Cech compactification, see also [2] and [13].

⁽⁴⁾ See [5], p. 153.

⁽s) Ibidem, p. 168. For properties of the Wallman compactification, [15].

1.2. Considering the one-point compactification (i, X^*) of a metric space, we note that the space X^* is generally not a metric space. For instance, if X is a metric space which is not locally compact, then by (1) X^* cannot be a metric space (since every metric space is a Hausdorff space). Thus if we seek, for a given metric space X, a compactification (f, X^*) where X^* is also a metric space, we generally cannot achieve this by merely adding a single point, and should allow the set $X^* - f(X)$ to contain more than one point.

In the present study we confine ourselves to metric compactifications (f, X^*) of metric separable spaces X only, i.e., we assume that *X is a separable, metric space and X* a metric space.* As already noted, the one-point compactification is generally not a metric compactification. Let us show that an analogous statement holds for the Stone-Cech compactification $(e, \beta(X))$.

THEOREM 1. If X is a non compact metric space and $(e, \beta(X))$ the Stone-*Cech compactification of X, then* β *(X) is not a metric space*(⁶).

Proof. Suppose, to the contrary, that $\beta(X)$ is a metric space. Let $e(X)$ be the image of X in $\beta(X)$. Since X is not compact, there exists a sequence $A = \{a_n\}_{n=1,2, \ldots}$ of points $a_n \in X$ which does not contain any convergent subsequence. Consider the points $e(a_n) = b_n$. Since $\beta(X)$ is compact and metric, the sequence $\{b_n\}_{n=1,2,...}$ contains a convergent subsequence ${b'_n} \subset {b_n}$. Let $b'_n \to b \in \beta(X)$ and consider the points $a'_n = e^{-1}(b'_n)$. By $A' = \{a'_n\} \subset A$ the sequence A' does not contain any convergent subsequence. Therefore A' is a closed subset of X . Let us define the real function $f: A' \rightarrow J = [0, 1]$ by

$$
f(a'_n) = \begin{cases} 0 \text{ for } n = 2k \\ 1 \text{ for } n = 2k - 1 \end{cases} k = 1, 2, \cdots.
$$

Since A' does not contain any convergent subsequence, the function $f: A' \rightarrow J$ is continuous and since A' is a closed subset of the metric space X , we can, using Tietze's extension theorem (7) , extend this function, to a continuous function $f: X \to J$ (the extended function is denoted also by f). By (2), the function fe^{-1} has a continuous extension \tilde{f} to the whole of $\beta(X)$. But since

$$
\tilde{f}(b'_n) = f e^{-1}(b'_n) = f(a'_n) = \begin{cases} 0 & \text{for } n = 2k \\ 1 & \text{for } n = 2k - 1 \end{cases}
$$

and $b'_n \rightarrow b$, the function f cannot be continuous at the point b. This contradiction shows that $\beta(X)$ is not a metric space.

⁽⁶⁾ This theorem seems to be well known. It was noted by A. Zabrodsky that the above proof may be applied to show that $\beta(X)$ can not even satisfy the first countability axiom.

⁽⁷⁾ See [8], p. 117.

REMARK 1. Since the Wallman compactification $(\Phi, w(X))$ is topologically equivalent to that of Stone-Cech, provided $w(X)$ is a Hausdorff space it follows by Theorem 1 that if X is a non-compact metric space, then the space $w(X)$ is not a metric space.

II. PROBLEMS ON COMPACTIFICATIONS

II.1. The results of Section I indicate that metric compactifications of metric spaces are generally neither the Stone-Cech nor the one-point compactification. Now, since for metric compactifications the set $X^* - f(X)$ generally contains more than one point, there arises a problem of finding the structure of this set for some classes of metric spaces X . For example the following questions can be posed:

(a) Is it always possible to find a compactification (f, X^*) of X such that $X^* - f(X)$ would be countable?

(b) Is it always possible to find a compactification (f, X^*) such that $\dim \lceil X^* - f(X) \rceil < \dim X?$

Regarding question (a) it is known that each space which does not contain a subset dense in itself, has a compactification (f, X^*) such that $X^* - f(X)$ is countable(8). On the other hand, it is easily seen that for each compactification of the set X of rational numbers the set $X^* - f(X)$ is uncountable.

Indeed, since $f: X \to X^*$ is a homeomorphism, each point of $f(X)$ is a limit point and therefore X^* is perfect. Hence X^* is uncountable(9).

Regarding (b) it is known(1°) that for each space X, there exists a compactification (f, X^*) such that dim $X^* = \dim X$ and thus $\dim[X^* - f(X)] \leq \dim X$. Easy examples show that in many cases this weak inequality \leq can be replaced by the strong \lt . It suffices, for example to take any *n*-dimensional cube J^n ; $n = 1, 2, \dots$ and any point $p \in Jⁿ$. The set $X = Jⁿ - (p)$ can be compactified by adding this single point. We then have $X^* = J^n$ and

$$
\dim[X^* - f(X)] = \dim(p) = 0 < \dim X,
$$

where $f = i$ is the identity mapping. On the other hand, it is not always possible to achieve the strong inequality dim $(X^* - f(X)) <$ dim X. Indeed, for a 0dimensional space X, $\dim(X^* - f(X)) < \dim X = 0$ means that $X^* - f(X)$ is empty and hence X is compact. It follows that for a 0-dimensional non compact space X this strong inequality is impossible. The problem of finding examples of *n*-dimensional spaces X , $n > 0$ of a simple topological structure for which $\dim \lceil X^* - f(X) \rceil$ < $\dim X$ does not hold for any compactification (f, X^*) of X is more complicated. More precisely, this problem may be formulated as follows:

⁽s) See [7], p. 194, IV.

⁽⁹⁾ See [3], p. 98.

⁽¹⁰⁾ See [4], p. 65, Theorem V, 6. Also [9], p. 72.

(c) Let X be a given *n*-dimensional space and $k \leq n$ an integer. Under what conditions on X shall we have dim $[X^* - f(X)] \geq k$ for each compactification (f, X^*) of X ?

II.2. B. Knaster discovered in [6] that there exist two kinds of absolute G_{δ} spaces (also called G_{δ} -spaces in compact spaces or topologically complete spaces). Their definition is (11) :

An absolute G_{δ} -space is said to be of the first kind, if there exists a compactification (f, X^*) such that $f(X) = \bigcap_{i=1}^{\infty} G_i$ and $\dim \left[Fr(G_i) \right] < \dim X$, where G_i , $i = 1, 2, \dots$, are sets open in X^* and $Fr(G_i)$ denotes the boundary of G_i in X^* . An absolute G_8 -space is said to be of the second kind if it is not of the first kind.

It was shown by Lelek (1^2) that

(3) An absolute G_{δ} -space of finite dimension is of the first kind, if and only if there exists a compactification (f, X^*) of X such that dim $[X^* - f(X)] < \dim X$.

Now, it was shown in [6] that the Cartesian product $N \times J$, where N is the set of irrational numbers in the interval $J = [0,1]$, is an absolute G_{δ} -space of the second kind. It was further proved in $\lceil 1 \rceil$ that if Z is any compact space with $\dim Z = n \geq 0$, then the space $X = N \times Z$ is an absolute G_{δ} -space of the second kind. These results provide a solution of problem (c) for $n = k$ in the class of finite dimensional absolute G_{δ} -spaces. The sequel will include a solution of the following problems:

(a₁) Does there exist, for any positive finite dimension $n = 1, 2, \dots$, a finite dimendsional space X, which is both an absolute F_a and G_b -space of the second kind?

 (a_2) Is it true that each absolute G_3 -space X of the second kind, of positive finite dimension *n*, contains a topological image of a set of the form $N \times Z$, where N is the set of irrational numbers of the interval $J = [0, 1]$ and $\dim Z = \dim X?$

 (a_3) Problem (c).

(a₄) Construction of a weakly infinite dimensional absolute F_{σ} and G_{δ} -space of the first kind such that for each compactification (f, X^*) there is $\dim(X^* - f(X)) = \infty({}^{13}).$

Before proceeding with a solution of problems $(a_1)-(a_4)$, we quote in the next section some facts on coverings.

⁽¹¹⁾ See: Introduction

 (12) See [11], p. 31, Theorem 1.

 (13) A space is called weakly infinite-dimensional if it is a union of a sequence of finite dimensional spaces X_k , with dim $X_k \to \infty$, for $k \to \infty$.

III. COWRINGS

A covering of a space Y is a family $\mathscr{G} = \{G_i\}$ *of sets* G_i *such that* $Y = \bigcup_i G_i$ *. If* G_i are open (closed) sets, the covering is called open (closed). If the diameters $\delta(G_i)$ of all G_i are $\lt \varepsilon$, $\mathscr G$ is called an ε -covering, and if $\mathscr G$ is finite—a finite covering.

 $d_n(Y)$ denotes the infinum of all numbers $\varepsilon > 0$ such that there exists a finite open ε -covering of Y satisfying

(4) $G_{i_0} \cap G_{i_1} \cap \cdots \cap G_{i_n} = \emptyset$, for any set of $n+1$ indices $i_0 < i_1 < \cdots < i_n$ (i.e., such that the intersection of any $n + 1$ different sets G_i is empty).

It is known that for finite coverings of a space Y the existence of an open e-covering satisfying (4) is equivalent to the existence of a closed e-covering satisfying (4), and that for a compact space Y, dim $Y \leq n$ if and only if $d_{n+1}(Y) = 0^{(14)}$. Let us now prove a property of the Lebesgue number λ of a finite covering.

(5) Let F_0, F_1, \dots, F_m be a finite family of closed subsets of a compact space Z. Then there exists a number $\lambda > 0$ (the Lebesgue number of the family $(F_0, F_1, \dots F_m)$ such that if there exists a point $p \in \mathbb{Z}$ at distance $\leq \lambda$ from all the sets $F_{k_0}, F_{k_1}, \dots, F_{k_t}$, then $\bigcap_{i=0}^j F_{k_i} \neq \emptyset$.

Proof. $(^{15})$. Suppose the contrary. Then there exists a sequence of points $p_n \in \mathbb{Z}$, $n = 0, 1, 2, \dots$, and families $S_j = \{F_{k_0}^j, \dots, F_{k_{n,j}}^j\}$, $j = 0, 1, 2, \dots$, of sets such that the point p_j is at distance $\leq (1/(j + 1))$ from all the sets F_{k_i} of the family S_i , but $\bigcap_{i=0}^{n_j} F_{kj} = \emptyset$. Since the number of different families S_j , $j=0,1,\dots$ constructed from a given finite family of sets ${F_k}_{k=0,1,\dots,m}$ is finite, some family $-$ say S₀—must appear in the sequence $\{S_0\}_{j=0,1,\dots}$ an infinite number of times. Thus there exists a subsequence $\{p'_n\} \subset \{p_n\}$ such that p'_n is at distance $\leq (1/(n+1))$ from all the sets $F_{k_0^0}, \dots, F_{k_{n_0}^0}$ of S_0 . Since Z is compact, the sequence $\{p'_n\}$ contains a convergent subsequence to some point $p \in Z$. Denoting this subsequence by $\{p'_n\}$, we have $p'_n \to p \in \mathbb{Z}$. Now, since $\rho(p'_n, F_{k_i^0}) \leq (1/(n+1))$ for $i = 0, 1, \dots, n_0$, and $n = 0, 1, \dots$, and since $p'_n \to p$, we have $\rho(p, F_{k_i}^0) = 0$. Thus $p \in F_{k_i}^0$, $i = 0, 1, \dots, n_0$, which is incompatible with the fact $\bigcap_{i=0}^{n_0} F_{k_i^0} = \emptyset$ (by the definition of *S_j*).

It follows by (5) that

(6) Let Y be a closed subset of a compact space Z and let $Y \subset \bigcup_{k=0}^m F_k$, where F_k are closed sets such that any different $n + 1$ of them have an empty intersection. Replacing each F_k by its e-neighborhood/(¹⁶) $G_k = S(F_k, \varepsilon)$ (in Z), where $2\varepsilon < \lambda$, we obtain an open (in Z) covering $\mathscr{G} = {\{\bar{G}_k\}}$ of Y, such that for the family ${\{\bar{G}_k\}}$ of closures of G_k , any $n + 1$ different sets \bar{G}_k have an empty intersection(17).

⁽¹⁴⁾ See [9], p. 60.

⁽¹⁵⁾ This is a standard proof and is given here for the sake of completeness only.

⁽¹⁶⁾ An e-neighborhood of a set F is by definition the union over all $p \in F$ of the sets $S_p = [z; \varrho(p,z) < \varepsilon : z \in Z]$

⁽¹⁷⁾ For a proof of (6) see also [14], p. 414, Lcmma 2 and [10], p. 257.

Another consequence of (5) is;

(7) If the closed sets F_0, F_1, \dots, F_m in a compact space Z have an empty intersection then there exists a number $\varepsilon > 0$ such that no set of diameter $\leq \varepsilon$ has a non empty intersection with each of the sets F_0, F_1, \dots, F_m .

Indeed, it suffices to take $\varepsilon = \lambda$ and to apply (5).

We shall now give some properties of coverings of simplexes.

Let $\sigma_s = (p_0, \dots, p_s)$ be a closed s-dimensional simplex with vertices p_0, p_1, \dots, p_s in the Euclidean s-dimensional space E^s and let $f: \sigma^s \to Z$ be a homeomorphism of σ^s into a space Z. Let $\sigma^{s-1,t}$ denote the $(s - 1)$ dimensional closed face of σ^s opposite to the vertex $p_i \in \sigma^s$, i.e. $\sigma^{s-1,i} = (p_0, \dots, p_{i-1}, p_{i+1}, \dots, p_s), i = 0, 1, \dots, s$, and let $\tau^s = f(\sigma^s)$ and $\tau^{s-1,i} = f(\sigma^{s-1,i})$. Then τ^s is a curvilinear simplex with vertices $q_i = f(p_i)$ and $(s - 1)$ -dimensional faces $\tau^{s-1,i}$, $i = 0, 1, \dots, s$. Since f is a homeomorphism and $\bigcap_{i=0}^{s} \sigma^{s-1-i} = \emptyset$, we have that $\bigcap_{i=0}^{s} \tau^{s-1,i} \neq \emptyset$. Thus applying (7) with $m = s$ to the closed sets $F_i = \tau^{s-1,i}$, we find that there exists a number $\varepsilon > 0$ such that no set with diameter $\leq \varepsilon$ intersects each of the faces $\tau^{s-1,i}$.

(8) Let $\varepsilon > 0$ be a number such that no set with diameter $\leq \varepsilon$ intersects each face $\tau^{s-1,i}$. Let further $\tau^s = \bigcup_{k=0}^m F_k$, where F_k are closed sets with diameters $\delta(F_k) \leq \varepsilon$, $k = 0, 1, \dots, m$. Then some $s + 1$ sets F_{k_0}, \dots, F_{k_s} have a non empty intersection.

Since $\delta(F_k) \leq \varepsilon$, no F_k containing a vertex q_i of τ^s intersects the face $\tau^{s-1,j}$ opposite to q_i . Since f is one-to-one, no set $f^{-1}(F_k)$ containing a vertex p_i of σ^s intersects the face $\sigma^{s-1,j}$ opposite to p_j . Now, the sets $f^{-1}(F_k)$, $k = 0,1,\dots m$, cover the simplex σ^s and are closed, since f is continuous. Thus applying the same procedure as in the proof of [2, 24] in ([1], p. 194) we obtain that some $s + 1$ sets $f^{-1}(F_{k_1}), j = 0,1,\dots s$, have a non empty intersection. Hence also the sets F_{k_1} , $j = 0, 1, \dots s$, have a non empty intersection.

IV. SOLUTION OF THE PROBLEMS FORMULATED IN II

IV.1. An n-dimensional absolute F_{σ} and G_{δ} -space X and its properties.

Let $\sigma^n = (p_0, p_1, \dots, p_n)$ be the *n*-dimensional closed simplex in the *n*-dimensional Euclidean space E^n with vertices $p_0 = (0, 0, \dots, 0)$ and $p_i = (0, \dots, 0, 1, 0, \dots, 0)$, $i = 1, 2, \dots, n$. (i.e. p_i is the point in Eⁿ whose *i*-th coordinate is 1 and all *i* other coordinates are 0). Let $A = \{a_j\}$, $j = 1, 2, \dots$, be the sequence of points of the form $a_j = (1/j)$, $j = 1, 2, \cdots$ on the real axis E^1 and let $a_0 = 0 \in E^1$. Denote by $Fr(\sigma^n) = \bigcup_{i=0}^n \sigma^{n-1,i}$ the boundary of the simplex σ^n . Let

(9)
$$
X = (A \times \sigma^n) \cup [(a_0) \times Fr(\sigma^n)]
$$

Then $X \subset E^{n+1}$ and the closure \overline{X} of X in E^{n+1} is

$$
\bar{X} = (A \times \sigma^n) \cup [(a_0) \times \sigma^n] = [A \cup (a_0)] \times \sigma^n.
$$

Since \overline{X} is a compact subset of E^{n+1} (as a product of two compact spaces $A \cup (a_0)$ and σ ⁿ), \overline{X} is a compact space, and since X can be written as a union $[(a_0) \times Fr(\sigma^n)] \cup [\bigcup_{j=1}^{\infty} (a_j) \times \sigma^n]$ of a countable number of compact sets, it follows that X is an absolute F_{σ} space.

On the other hand the set $\bar{X} - X$ equals the interior of the simplex $(a_0) \times \sigma^n$. Since this interior is a union of compact sets, the set $\bar{X}-\bar{X}$ is an F_{σ} set and therefore X is a G_{δ} -set in \bar{X} . It follows that

(b₁) The set X defined in (9) is both an absolute F_a and G_b -space. Evidently, $\dim X = n$.

We shall now show that

(b₁) For each compactification (f, X^*) of X we have dim $[X^* - f(X)] \ge \dim X = n$. Indeed, suppose to the contrary that dim $[X^* - f(X)] \leq n - 1 < \dim X$ and consider the sets $\tau_j^n = f[(a_j) \times \sigma^n]$, $j = 1, 2, \dots$, and $\tau_j^{n-1,i} = f[(a_j) \times \sigma^{n-1,i}]$, $i = 0, 1, \dots, n$, $j = 0, 1, \dots$. Since $a_j \rightarrow a_0$ for $j \rightarrow \infty$, it follows that for every $i=0,1,\dots,n$, dist $\{[(a_i)\times\sigma^{n-1,i}], [a_0]\times\sigma^{n-1,i}]\}\rightarrow 0$ for $j\rightarrow\infty$, where $dist(A, B) = max[sup_{x \in A} \rho(x, B), sup_{x \in B} \rho(A, x)]$ is the distance of the sets A and B in the sense of Hausdorff⁽¹⁸). Since $f: X \to X^*$ is continuous and $[A \cup (a_0)] \times \sigma^{n-1,i}$ is compact it follows easily that

(10)
$$
\text{dist}(\tau_j^{n-1,i}, \tau_0^{n-1,i}) \to 0 \text{ for } j \to \infty \text{ and each } i = 0, 1, \dots, n.
$$

Now, the space X^* being compact, there exists a subsequence $\{j'\}$ of $\{j\}$ such that the sequence of sets $\{\tau_{j'}^n\}$ converges to a continuum $C \subset X^{*}({}^{19})$. Writing j instead of j', we have dist $(\tau_i^n, C) \to 0$ for $j \to \infty$. If there were $C \cap [\lfloor \int_{i=1}^{\infty} \tau_i^n] \neq \emptyset$, then there would exist a point y_0 and a sequence $y_{jk} \in \tau_{jk}^n$ of points, such that $y_{jk} \rightarrow y_0 \in \tau_{j_0}^n$ for $k \rightarrow \infty$ and some j_0 . Then $x_{jk} = f^{-1}(y_{jk}) \rightarrow f^{-1}(y_0) = x_0$, which is, because of $x_{j_k} \in (a_{j_k}) \times \sigma^n$ and $x_0 \in (a_{j_0}) \times \sigma^n$, incompatible with the openness of $(a_{j_0}) \times \sigma^n$ in the union $\bigcup_{j=1}^{\infty} (a_j) \times \sigma^n$. It follows that $C \cap [\bigcup_{j=1}^{\infty} \tau_j^n] = \emptyset$, and since the set $\bigcup_{i=0}^{n} \tau_0^{n-1,i}$ is an $(n-1)$ -dimensional compact subset of C, it follows from the assumption dim $[X^* - f(X)] \leq n - 1$ and from Corollary 1 in ([4], p. 32), that dim $C \leq n - 1$. Thus, by the definition of $d_n(Y)$ (cf. section III), we obtain $d_n(C) = 0$. Hence, by (6), there exists for every $\varepsilon > 0$ an ε -covering of C by sets G_k open in X^* , $k=0,1,\dots,m$ such that

(11)
$$
\bar{G}_{k_0} \cap \bar{G}_{k_1} \cap \cdots \cap \bar{G}_{k_n} = \emptyset
$$
 for any set of subscripts $k_0 < k_1 < \cdots < k_n$.

Since $\bigcap_{i=0}^{n} \tau_0^{n-1,i} = \emptyset$ we may, according to (7), choose for this covering an ε so small that no \bar{G}_k intersects each set $\tau_0^{n-1,i}$. Hence by (10) no set \bar{G}_k intersects all the faces $\tau_i^{n-1,i}$, $i = 0,1,\dots,n$, for sufficiently large *j*. Let $G = \bigcup_{k=0}^m G_k$. Since $C \subset G$ and dist $(\tau_i^n, C) \to 0$ for $j \to \infty$, there exists a j_0 such that $\tau_i^n \subset G$ for $j \geq j_0$. Fixing any $j \geq j_0$, we find that the sets $F_k = \tau_j^n \cap \bar{G}_k$, $k = 0, 1, \dots, m$, satisfy the assumptions of (8) with s replaced by n and τ by τ_j . Hence by (8) some $n + 1$ sets F_{k_0}, \dots, F_{k_n} , and therefore also the sets $\bar{G}_{k_0}, \dots, \bar{G}_k$ have a non empty intersection, which is incompatible with (11) . Thus (b'_1) is proved.

⁽¹⁸⁾ See [8], p. 106

Qg) See [9], p. 110. Also [16], p. 11.

From (b_1) , (b'_1) and (3) we obtain

THEOREM 2. The set X defined in (9) is both an absolute F_{σ} and G_{δ} -space of *the second kind and of dimension n.*

This theorem gives an answer to problem (a_1) .

IV. 2. On a problem of A. Lelek. The following problem P. 313 was formulated by Lelek in $[11]$, p. 34).

Does there exist, for each absolute G_{λ} -space X of the second kind with finite, positive dimension, a compact space Z with positive dimension, such that X contains a topological image of the set $N \times Z$ (N being the set of irrational numbers of the interval $J = [0,1]$?

A negative answer to this question was given in $[12]$. Now it is easily seen that a negative answer to problem (a_2) posed in section II contains, as a special case, a negative answer to the problem of Lelek. (It suffices to take, in (a₂), $n = \dim X = 1$.) We now proceed to prove that the answer to (a₂) is negative.

Indeed, let X be the space defined in (9). We shall show that there does not exist a space Z with dim $Z = \dim X = n$ such that $N \times Z$ has a topological image in X.

Suppose, to the contrary, that such a space Z exists and let $h : N \times Z \rightarrow X$ be a homeomorphism of $N \times Z$ into X. Fix a point $\zeta \in N$. Then the *n*-dimensional space $(\xi) \times Z$ has a topological image in X. Now X being a countable union of compact disjoint sets $(a_i) \times \sigma^n$ and $(a_0) \times Fr(\sigma^n)$, $j = 1, 2, \cdots$ and $(\zeta) \times Z$ being *n*-dimensional,it follows(²⁰) that $h[(\xi) \times Z]$ has an *n*-dimensional intersection with some set $(a_{i(\xi)}) \times \sigma^n$. This intersection, as *n*-dimensional subset of σ^n , contains(²¹) an open subset of $(a_{i(\xi)}) \times \sigma^n$. Since h is one-to-one, the sets $h[(\xi) \times Z]$ and $h[(\xi') \times Z]$ are disjoint for $\xi \neq \xi', \xi, \xi' \in N$, and since N is uncountable, we get an uncountable family of disjoint open sets contained in X , which is impossible.

IV. 3. **Two theorems on eompaetifieation.** We shall now prove two theorems which will enable us to provide an answer to problem (c) and to construct, for any $n = 1, 2, \dots, \aleph_0$, a *n*-dimensional space X which is not locally compact at a *single* point and such that for each compactification (f, X^*) of X we heva $\dim [X^* - f(X)] \geq 1.$

THEOREM 3. Suppose that the space X contains a sequence ${C_i}_{i=1, 2, ...}$ of *continua* C_i *and a point p such that*

(c₁) the sets C_i are closed and open in the union $\bigcup_{i=1}^{\infty} C_i$ and $C_i \cap C_j = \emptyset$ for $i \neq j$;

⁽ 20) This is a consequence of the Sum Theorem for Dimension n, Cf. [4], p. 30.

⁽²²⁾ This follows easily from Theorem IV, 3 in [4], p. 44.

 (c_2) there exists a number $\delta > 0$, such that $\delta(C_i) \geq \delta$ for each $i = 1, 2, \dots;$

$$
(c_3) \overline{\bigcup_{i=1}^{\infty} C_i} - \bigcup_{i=1}^{\infty} C_i = (p).
$$

Then X is not locally compact at the point p , and for each compactification (f, X^*) of X we have dim $[X^* - f(X)] \geq 1$.

Proof. Let U_p be an arbitrary neighborhood containing the point p. We have to show that the closure \bar{U}_p is not compact. By (c_1) and (c_3) there exists a sequence of points $p_i \in \bigcup_{i=1}^{\infty} C_i$ such that $p_i \to p$ for $i \to \infty$ and such that the sequence ${p_i}_{i=1,2,...}$ has only a finite number of points in common with each C_i . Thus we may assume that for each $i = 1, 2, \dots$, we have $p_i \in C_i$. Let $S = S(p, r)$ be a spherical neighborhood of p with radius $r < \delta/2$ contained in U_p . Since $p_i \rightarrow p$, the sets $C_i \cap S$ are not empty for *i* sufficiently large, and since C_i are connected, we obtain from (c_2) that for these *i*; $C_i \cap Fr(S) \neq \emptyset$. Choose from each such set $C_i \cap Fr(S)$ a point q_i and consider the sequence $\{q_i\}$. Since $\bar{S} \subset \bar{U}_p$, we have $\{q_i\} \subset \bar{U}_p$ and since $q_i \in Fr(S)$, it follows that $p(q_i, p) = r > 0$. Now, since $q_i \in C_i$ for i sufficiently large, (c_1) and (c_3) imply that any convergent subsequence of $\{q_i\}$ tends to p, which is impossible because $\rho(q_i, p) = r > 0$. Thus \overline{U}_p is not compact. It remains to show that if (f, X^*) is any compactification of X, then dim $[X^* - f(X)] \geq 1$. For this purpose let us consider the sets $X_1 = \bigcup_{i=1}^{\infty} C_i \cup (p)$ and $f(X_1)$. The closure $f(\overline{X_1}) = X_1^* \subset X^*$ is a compactification of X_1 . Let y be any point of X_1^* -f(X₁). Then the point $y \notin f(X)$. Indeed, if there would exist a point $x \in X$ such that $y = f(x)$, then we would have $x \notin X_1$, since f is one-to-one. Now, $y \in \overline{f(X_1)}$ implies that there exists a sequence of points $x_n \in X_1$ such that $f(x_n) \to y$. By the continuity of f^{-1} we have $x_n \to x \in X - X_1$. But by (c_3) the set X_1 is closed in X, and since $x_n \in X_1$ it follows that $x \in X_1$. This contradiction shows that $y \notin f(X)$. Thus

(12)
$$
[X_1^* - f(X_1)] \cap f(X) = [\overline{f(X_1)} - f(X_1)] \cap f(X) = \emptyset.
$$

Let us take further $r < \delta/2$ and construct (in analogy with the first part of the proof) points $p_i \rightarrow p$, $p_i \in C_i$ and $q_i \in C_i$, such that $\rho(p, q_i) = r > 0$ for i sufficiently large. Since $X_1^* = \overline{f(X_1)}$ is compact and $f(C_i) \subset X_1^*$ we can choose a subsequence of the sequence $\{f(C_i)\}\$ of continua converging(2^2) to some continuum C. Denoting the subscpripts of this subsequence by *i* we have therefore that dist $[f(C_i), C] \rightarrow 0$ for $i \to \infty$. Now, since $p_i \to p$ and $p_i \in C_i$, it follows that C contains the point $f(p)$. If C would reduce to this point $f(p)$, then $q_i \in C_i$ would imply $f(q_i) \rightarrow f(p)$, and since f^{-1} is continuous we would also have $q_i \rightarrow p$, in contradiction to $p(p, q_i) = r > 0$. It follows that C contains at least two points, and since it is a continuum we have dim $C \geq 1$. Therefore dim $\lceil C - (f(p)) \rceil \geq 1$.

(22) Seo [9], p. 110.

Now, by (c_1) we have $C \cap f(C_i) = \emptyset$ for each $i = 1, 2, \dots$. Therefore $X_1^* \subset X^*$ and (12) imply that dim $[X^* - f(X)] \ge 1$. Theorem 3 is proved.

EXAMPLE 1. Let $X = (a_0) \cup \left[\bigcup_{j=1}^{\infty} (a_j) \times J\right]$ where $a_0 = 0$ and $a_j = 2^{-j+1}$ $j = 1, 2, \dots$, are real numbers on the real axis and $J = [0, 1]$ (Figure 1). This 1-dimensional space X is not locally compact at the single point $a_0 = 0$, and by Theorem 3 dim $[X^* - f(X)] \ge 1$ for any compactification *(f,X*)* of X. It is also easily seen that X is an absolute F_{σ} and G_{δ} -space and thus, by (3) and dim $X = 1$, we obtain that X is an absolute F_{σ} and G_{δ} -space of the second kind.

EXAMPLE 2. Let $n = 2, 3, ..., \aleph_0$, and let $X = (J^n - X_1) \cup (0)$, where $X_1 = \{x; x=(x_1, x_2, \cdots, x_n), x_1 = 0, 0 \le x_i \le 1, \text{ for } i = 2, 3, \cdots, n\}$ and $O = (0,0,\dots,0)$. (If $n = \aleph_0, J^n$ is the Hilbert cube). It is clear that dim $X = n$, and that X is not locally compact at the single point O . It is also easy to construct a sequence C_i of continua in X, such that the assumptions of Theorem 3 be satisfied for the pooint $p = 0$. Hence dim $[X^* - f(X)] \ge 1$ for any compactification (f, X^*) of X (for $n = 3$, see Figure 2).

By Theorem 3 for each compactification (f, X^*) of this full cube X excluding the full square *OABC* but including point *O*, dim $[X^* - f(X)] \geq 1$.

Let us now show that

(d) If the set X is a closed subset of space Y and for each compactification (g, X^*) of X we have dim $[X^* - g(X)] \geq k$, then for each compactification (f, Y^*) of Y we have dim $[Y^* - f(Y)] \geq k$.

Proof. The closure (in Y^*) $\overline{f(X)} = X^*$ of $f(X)$ is a compactification (f, X^*) of X and therefore by assumption, we have $\dim[X^* - f(X)] \geq k$. Now, it is easily seen that $\overline{f(X)} \cap f(Y - X) = \emptyset$. Indeed, otherwise we could find a point $x_0 \in Y - X$ and a sequence of points $x_n \in X$ such that $f(x_n) \to f(x_0)$. But since f is homeomorphism on Y there would be $x_n \to x_0$, which is incompatible with the closedness of X in Y. From $\overline{f(X)} \cap f(Y-X) = \emptyset$, we obtain

$$
X^* - f(X) \subset Y^* - f(Y),
$$

and therefore dim $[Y^* - f(Y)] \geq k$.

As a consequence of (b'_1) and (d), we have the following answer to problem (c):

THEOREM 4. If space Y contains topologically the set X defined in (9) and X is a closed subset of Y, then for each compactification (f, Y^*) of Y^* we have $\dim \lceil Y^* - f(Y) \rceil \geq n$.

(The case $n = 2$ is illustrated in Figure 3).

Figure 3

According to theorem 4, for each compactification (f, Y^*) of this tull cube Y excluding the interior of the square *OABC* (but including *OA, AB, BC* and *CO*) dim $[Y^* - f(Y)] \geq 2$.

IV. 4. A weakly infinite-dimensional absolute F_{σ} and G_{δ} -space.

As stated in (3), a finite dimensional absolute G_{δ} -space X is of the first kind if and only if there exists a compactification (f, X^*) of X such that dim $\lceil X^* - f(X) \rceil < \dim X$.

We shall now show that the above condition is not necessary for infinite dimensional spaces. More precisely, we shall construct an absolute F_{σ} and G_{δ} -space of the first kind which is weakly infinite-dimensional and such that for each compactification (f, X^*) of X we have dim $[X^* - f(X)] = \infty$. Let us take, for fixed *n*, the set A_n of points $x_{n,m} = 2^{-n} + 2^{-m}$, $m = n + 1$, $n + 2, \dots$, on the real axis. Define $X_n = (A_n \times \sigma^n) \cup [(2^{-n}) \times Fr(\sigma^n)]$. where σ^n is an *n*-dimensional closed simplex with diameter $\delta(\sigma^n) = 2^{-n}$. Let $X = \bigcup_{n=1}^{\infty} X_n$.

The set X can be considered as a subset of the Hilbert cube J^{\aleph_0} , and its closure \bar{X} is $\bar{X} = \bigcup_{n=1}^{\infty} X_n \cup \left[\bigcup_{n=1}^{\infty} (2^{-n}) \times \text{Int}(\sigma^n) \right] \cup (0)$ where $\text{Int} \sigma^n = \sigma^n - Fr(\sigma^n)$ and $0 = (0, 0, \dots)$ is the point all whose coordinates are zero. It is also easily seen that \bar{X} may be written in the form $\bigcup_{n=1}^{\infty} \tilde{X}_n \cup (0)$, where $\tilde{X}_n = [A_n \cup (2^{-n})] \times \sigma^n$. Since \bar{X} is a compact space and \bar{X} is a countable union of compact sets, we find that X is an absolute F_{σ} -space. Further, we can write each set $(2^{-n}) \times Int(\sigma^n)$ as a union $\bigcup_{i=1}^{\infty} F_i^{\textbf{n}}$ of compact sets $F_i^{\textbf{n}}$, $i = 1, 2, \cdots$. Thus

$$
\bar{X} - X = \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{\infty} F_i^n \cup (0)
$$

is an F_{σ} set and thus X is an absolute G_{δ} -space. Moreover, the sets

$$
\tilde{X} - \left[\bigcup_{n=1}^{s} \bigcup_{i=1}^{s} F_i^n \cup (O) \right] = G_s
$$

are open in \bar{X} , dim $\left[Fr(G_s)\right] \leq s$ and $\bigcap_{s=1}^{\infty} G_s = X$. Hence, X is an absolute F_{σ} and G_{δ} -space of the first kind. By the definition of X, it follows that X is a weakly infinite-dimensional space i.e. dim $X = \infty^{22}$).

We shall now show that for each compactification (f, X^*) of X we have $\dim[X^* - f(X)] = \infty$. For this purpose, let us note that the set X_n is homeomorphic with the space defined in (9), and hence by (b'_1) we have

$$
\dim [X_n^* - f(X_n)] \ge \dim X_n = n
$$

for each compactification (f, X_n^*) of X_n . Now it is easily seen that X_n is a closed subset of X. Thus, applying (d) for $X = X_n$ and $Y = X$, we have

$$
\dim\left[X^* - f(X)\right] \geq n.
$$

Since *n* is arbitrary, it follows that dim $[X^* - f(X)] = \infty$.

Acknowledgment. The author is indebted to Mr. E. Goldberg for his kind help in editing this paper.

⁽²²⁾ For weakly infinite-dimensional spaces X, dim $X = \omega$ is sometimes written instead of dim $X = \infty$.

REFERENCES

1. Alexandroff, P. S., 1947, *Kombinatornaya topologia,* OGIZ.

2. Cech, E., 1937, On bicompact spaces, *Ann. Math.* (2), 38, 823-844.

3. Hocking, J. G. and Young, G. S., 1961, *Topology,* Addison-Wesley.

4. Hurewicz, W. and Wallman, H., 1941, *Dimension Theory,* Princeton Univ. Press.

5. Kelley, J. L., 1955, *General Topology,* Van Nostrand, New York.

6. Knaster, B., 1952, Un theoreme sur la compactification, *Ann. See. Polon. Math.,* 23, 252-267.

7. Knaster, B., and Urbanik, K., 1953, Sur les espaces s6parables de dimension 0, *Fund. Math., 40,* 194-202.

8. Kuratowski, C., 1952, *Topologie 1,* Warszawa.

9. Kuratowski, C., 1952, *Topologie II,* Warszawa.

10. Lebesgue, H., Sur les correspondanees entre les points de deux espaces, *Fund. Math., 2,* 259-261.

11. Lelek, A., 1961, Sur deux genres d'espaces eomplets, *Coll. Math.* VII, 31-34.

12. Reichaw (Reichbach), M., A note on absolute G6-spaces, *Prac. Amer. Math. Sac.* (in press).

13. Stone, M. H., 1937, Applications of the theory of Boolean rings to general topology *Trans. Amer. Math. Sac.,* 41, 375-481.

14. Urysohn, P. S., 1951, Trudy po topologii i drugim obtastyam matematiki, Vol. I.

15. Wallman, H., 1941, Lattices and topological spa~es, *Ann. Math.* (2), 42, 687-697.

16. Whyburn, G. T., 1958, *Topological analysis,* Princeton Univ. Press.

TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY,

HAIFA