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If f :  X-+ X* is a homeomorphism of a metric separable space X into a compact 
metric space X* such that f(X) = X*, then the pair (f,X*) is called a metric 
compactification of X. An absolute G0-space (Fa-space) X is said to be of the 
first kind, if there exists a metric compactification (f,X*) of X such that 

~o 

f(X) = ~ G~, where Gi are sets open in X* and dim[Fr(Gi)] < dim X. 
i = 1  

(Fr(Gi) being the boundary of G~ and dim X- - the  dimension of X). An 
absolute G0-space (Fa-space), which is not of the first kind, is said to be of 
the second kind. In the present paper spaces which are both absolute G~ 
and F,,-spaees of the second kind are constructed for any positive finite 
dimension, a problem related to one of A. Lelek in [11] is solved, axed a 
sufficient condition on X is given under which dim[X* - f (X) ]  >__ k, for any 
metric compactification (],X*) of X, where k =< dim X is a given number. 

Introduction. Let f : X - * X *  be a homeomorph i sm o f  a separable metric 
space X into a compac t  metric space X*, such t h a t f ( X )  = X*. The pair  ( f ,X*)  is 

then called a metric compactification of  X.  I f  X is an absolute G0-space (F~-space) 

(i.e. a G0-set (F~-set) in some compact  space), then X is said to be o f  the first kind 

(cf. [6])  provided there exists a compactif icat ion ( f ,X*)  o f  X such that  
~o G f ( X )  = ¢3i=1 i, where Gi are sets open in X* and dim [Fr(Gi)] < dim X, 

i = 1, 2 , . - . .  (Fr(Gi) denotes  the boundary  o f  G i, and d i m X  the dimension of  X 

in the sense o f  Menger-Urysohn.)  An  absolute G0-space (F~-space) which is no t  

o f  the first kind is said to  be o f  the second kind. The aim o f  the present paper  is: 

(i) to  construct ,  for  any positive finite dimension, spaces X which are bo th  

absolute F~ and absolute G0-spaces o f  the second kind;  (ii) to  solve a problem 
related to one o f A .  Lelek in [11] ;  and (iii) to  give a sufficient condi t ion on X,  

such that,  for  a given k < d i m X ,  we have dim [X* - f ( X ) ]  > k for  every compac-  
tification ( f ,X*)  of  X.  

The paper  consists o f  four  parts. In Section I some known compactif icat ions 

are ment ioned;  in Section I I  several problems concerning compactif icat ions are 
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posed. Facts on coverings are quoted in Section III. Finally, Section IV contains 
a solution of the problems(1) posed in Section II. 

I. SOME COMPACTIFICATIONS OF METRIC SPACES 

1.1. Let X be a given topological space. Let X* = X o ( x * ) ,  where x*6X 
is an additional point, and let us define the toppology in X* by taking as open 
sets all sets open in X and all subsets U of X*, such that X * -  U is a closed 
compact subset of X. Then the theorem of Alexandroff states: 

(1) The space X* is a compact topological space and X* is a Hausdorff space 
if  and only if X is a locally compact Hausdorff space(2). 

The space X* is called the one-point compactification of the space X. 
A topological embedding is usually allowed rather than insist that X actually 

be a subset of X*. 
Thus by a compactification of a space X a pair (f, X*) is understood, such that 
f :  X--, X* is a homeomorphism of X into a compact space X* and f ( X ) =  X* 
(i.e. the image f (X)  of X is dense in X*). In this sense the one-point compacti- 
fication of a non compact space X is a pair (i, X*) where i: X ~ X* is the identity 
mapping and i(X) = X* = X u (x*). 

Another compactification of a topological space X is the Stone-(~ech compacti- 
fication (e, fl(X))(3). This compactification is defined as follows: 

Let us take the set F(X) of all continuous functions f :  X ~ d mapping X into 
the interval J = [0,1] and the product dVtX) with the Tychonoff topology. Let us 
define the mapping e: X ~ j~tx) by correlating with each point x e X the point 
e(x) whose f - th  coordinate is f (x) ,  for each f e  F(X). The mapping e(x) is a con- 
tinuous mapping of X into jrtx), and in the case when X is a completely regular 
Tt-space it turns out to be a homeomorphism. In this case we define fl(X) by 
by fl(X) = e(X) and the pair (e, fl(X)) is called the Stone-t~ech compactification 

of X. 
Let us note that:  
(2) If  (e, fl(X)) is the Stone-(2ech compactification of a completely regular 

Tl-space X and f :  X ~ Y is a continuous mapping of X into a compact Hausdorff 
space Y, thenf [e -~(x) ]  has a continuous extension on fl(X) into y(4). 

Numerous other compactifications were constructed for various purposes. 
One of them, used in the dimension theory, is the Wallman compactification 
(~, w(X)). It turns out to be topologically equivalent to the Stone-C_.ech compacti- 
fication provided w(X) is a Hausdorff space(5). 

(0 I learned recently that some problems considered in the present study have been solved 
by A. Lelek in an entirely different way (not published). 

(2) See [5], p. 150, also [3], p. 73. 
(3) See [5], p. 152. For properties of the Stonc-~ech compactification,see also [2] and [13]. 
(4) See [5], p. 153. 
(s) Ibidem, p. 168. For properties of the Wallman compactification, [15]. 
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1.2. Considering the one-point compactification ( i , X * ) o f  a metric space, we 
note that the space X* is generally not a metric space. For  instance, if X is a 
metric space which is not locally compact, then by (1) X* cannot be a metric 
space (since every metric space is a Hausdorff space). Thus if we seek, for a given 
metric space X, a compactification (f, X*) where X* is also a metric space, we 
generally cannot achieve this by merely adding a single point, and should allow 
the set X* - f ( X )  to contain more than one point. 

In the present study we confine ourselves to metric compactifications (f ,X*) 
of  metric separable spaces X only, i.e., we assume that X is a separable, metric 
space and X* a metric space. As already noted, the one-point compactification 
is generally not a metric compactification. Let us show that an analogous 
statement holds for the Stone-(3ech compactification (e,p(X)). 

THEOREM 1. I f  X is a non compact metric space and (e, fl(X)) the Stone- 
Cech compactification of X,  then fl(X) is not a metric space(6). 

Proof. Suppose, to the contrary, that fl(X) is a metric space. Let e(X) be the 
image of X in fl(X). Since X is not compact, there exists a sequence A = {a~}~ = ~,2 ... 
of  points a n ~ X which does not contain any convergent subsequence. Consider 
the points e(an) = b~. Since fl(X) is compact and metric, the sequence {bn}n = 1,z .... 
contains a convergent subsequence {b'~} c {b~}. Let b~--* b ~ fl(X) and consider 
the points a" = e-l(b'). By A' = {a ' }cA  the sequence A' does not contain any 
convergent subsequence. Therefore A' is a closed subset of  X. Let us define 
the real f un c t i on f :  A' ~ J = [0, 1_] by 

f(a'~) = { 01 forf°r nn == 2k2k _ 1 k = 1,2, . . . .  

Since A' does not contain any convergent subsequence, the function f :  A ' ~  J 
is continuous and since A'  is a closed subset of  the metric space X, we can, 
using Tietze's extension theorem(7), extend this function, to a continuous function 
f :  X ~ d (the extended function is denoted also by f ) .  By (2), the func t ionfe-  t has 
a continuous extension f t o  the whole of  p(X). But since 

, -1 , { 0 for n = 2 k  
f(bn) = f e  (bn)=f(a'n)= 1 for n = 2 k - 1  

and b" -* b, the function f c a n n o t  be continuous at the point b. This contradiction 
shows that fl(X) is not a metric space. 

(6) This theorem seems to be well known. It was noted by A. Zabrodsky that the above 
proof may be applied to show that fl(X) can not even satisfy the first countability axiom. 

(7) See [8], p. 117. 
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REMARK 1. Since the Wallman compactification (O,w(X)) is topologically 
equivalent to that of Stone-Cech, provided w(X) is a Hausdorff space it follows 
by Theorem I that if X is a non-compact metric space, then the space w(X) is not a 
metric space. 

II.  PROBLEMS ON COMPACTIFICATIONS 

II.1. The results of Section I indicate that metric compactifications of metric 
spaces are generally neither the Stone-Cech nor the one-point compactification. 
Now, since for metric compactifications the set X*- f (X)  generally contains 
more than one point, there arises a problem of finding the structure of this set 
for some classes of metric spaces X. For example the following questions can be 
posed: 

(a) Is it always possible to find a compactification (f ,X*) of X such that 
X*- f (X)  would be countable? 

(b) Is it always possible to find a compactification (f,X*) such that 
dim [X* - f ( X ) ]  < dimX? 

Regarding question (a) it is known that each space which does not contain a 
subset dense in itself, has a compactification (f,X*) such that X*- f (X)  is 
countable(8). On the other hand, it is easily seen that for each compactification 
of the set X of rational numbers the set X* - f (X)  is uncountable. 

Indeed, since f : X  ~ X *  is a homeomorphism, each point o f f ( X )  is a limit 
point and therefore X* is perfect. Hence X* is uncountable(a). 

Regarding (b) it is known(x°) that for each space X, there exists a compactifi- 
cation (f,X*) such that d i m X * - - d i m X  and thus d i m [ X * - f ( X ) ]  < dimX. 
Easy examples show that in many cases this weak inequality < can be replaced 
by the strong < .  It suffices, for example to take any n-dimensional cube J"; 
n = 1,2, ... and any point p~J". The set X = J" -(p) can be compactified by 
adding this single point. We then have X* -- J "and 

dim[X* - f ( X ) ]  = dim(p) = 0 < dimX, 

where f  = i is the identity mapping. On the other hand, it is not always possible 
to achieve the strong inequality d i m ( X * - f ( X ) ) < d i m X .  Indeed, for a 0- 
dimensional space X, d i m ( X * - f ( X ) )  < d imX = 0 means that X * - f ( X )  is 
empty and hence X is compact. It follows that for a 0-dimensional non compact 
space X this strong inequality is impossible. The problem of finding examples 
of  n-dimensional spaces X, n > 0 of a simple topological structure for which 
dim [X* - f ( X ) ]  < dim X does not hold for any compactification (f, X*) of X is 
more complicated. More precisely, this problem may be formulated as follows: 

(s) See [7], p. 194, IV. 
(9) See [3], p. 98. 
(lO) See [4], p. 65, Theorem V, 6. Also [9], p. 72. 
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(c) Let X be a given n-dimensional space and k <= n an integer. Under what 
conditions on X shall we have dim [X* - f ( X ) ]  > k for each compactification 
(f, X*) of X? 

II.2. B. Knaster discovered in [6] that there exist two kinds of absolute G~- 
spaces (also called G~-spaces in compact spaces or topologically complete spaces). 
Their definition is(11): 

An absolute G6-space is said to be of the first kind, if there exists a compactifi- 

cation (f ,X*) such that f ( X )  = r-) G i and dim [Fr(Gi) ] < dim X, where 

G~, i = 1, 2, ..., are sets open in X* and Fr(G~) denotes the boundary of G~ in X*. 
An absolute G~-space is said to be of the second kind if it is not of the first kind. 

It was shown by Lelek(12) that 

(3) An absolute G~-space of finite dimension is of the first kind, if and only if 
there exists a compactification (f, X*) of X such that dim [X* - f ( X ) ]  < dim X. 

Now, it was shown in [6] that the Cartesian product N x J,  where N is the set 
of irrational numbers in the interval J = [0,1], is an absolute G~-space of the 
second kind. It was further proved in [11] that if Z is any compact space with 
dim Z = n ->_ 0, then the space X = N x Z is an absolute G~-space of the second 
kind. These results provide a solution of  problem (c) for n = k in the class of  
finite dimensional absolute G~-spaces. 1"he sequel will include a solution of the 
following problems: 

(al) Does there exist, for any positive finite dimension n = 1,2,.. . ,  a finite 
dimendsional space X, which is both an absolute F,, and G6-space of  the second kind? 

(a2) Is it true that each absolute G,-space X of the second kind, of  positive 
finite dimension n, contains a topological image of a set of the form N x Z, 
where N is the set of  irrational numbers of  the interval J = [0, 1] and 
dim Z = dim X? 

(a3) Problem (c). 

(a,) Construction of a weakly infinite dimensional absolute Fo and G~-space 
of the first kind such that for each compactification (f ,  X*) there is 
d i m ( X * - f ( X ) )  = 00(13). 

Before proceeding with a solution of problems (al)--(a4), we quote in the next 
section some facts on coverings. 

(11) See: Introduction 
(22) See [11], p. 31, Theorem 1. 

(23) A space is called weakly infinite-dimensional if it is a union of  a sequence of finite 
dimensional spaces Xk, with dim Xk-+oo, for k~oo. 
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III. COWRINGS 

A covering of  a space Y is a family ~ = {Gi} of sets G~ such that Y = [,.JtGt. If  
G i are open (closed) sets, the covering is called open (closed). If the diameters 
6(Gi) of all Gi are < e, (~ is called an e-covering, and if ~ is finite--a finite covering. 

d,(Y) denotes the infinum of  all numbers e > 0 such that there exists a finite 
open e-covering of Y satisfying 

(4) G i o n G ~ ' " C ~ G i . - - O ,  for any set of n + l  indices i o < i l < ' " < i n  
(i.e., such that the intersection of  any n + 1 different sets G~ is empty). 

It  is known that for finite coverings of a space Y the existence of an open 
e-covering satisfying (4) is equivalent to the existence of a closed e-covering satis- 
fying (4), and that for a compact space I7, dim Y __< n if and only if d,+ ,(Y) = 0(14). 
Let us now prove a property of  the Lebesgue number 2 of a finite covering. 

(5) Let Fo, F1, ..',Fro be a finite family of  closed subsets of  a compact space Z. 
Then there exists a number 2 > 0 (the Lebesgue number of  the family 
(F0,F1, ... Fro) ) such that if there exists a point p e Z at distance =< 2 from all 

the sets Fko,Fkl, ..', Fk~, then f')~=oFk,-~ O. 

Proof.(15). Suppose the contrary. Then there exists a sequence of  points 

p, e Z ,  n = 0,1,2, .- . ,  and families S t = {Fk~o,...,FkJ.}, j = 0 ,1 ,2 , . . . ,  of  sets such 
that the point pj is at distance < ( l / ( j  + 1)) from" all the sets Fk{ of  the family 
S i, but ~ o F k { =  O. Since the number of different families S~, j = 0 , 1 , . . .  
constructed from a given finite family of sets {Fk)k=0.1 ..... is finite, some family 
- - say  So--must  appear in the sequence {So}j=o, t .... an infinite number of times. 
Thus there exists a subsequence {p~} ~ {p,} such that p,'is at distance < (1/(n + 1)) 
from all the sets Fk o , ..., FkOo of  S o. Since Z is compact, the sequence {p',} contains 
a convergent subsequence to some point p ~ Z. Denoting this subsequence by {p'~}, 
we have p ' ~ p ~ Z .  Now, since p(p'~,Fk o) < (1/(n + 1)) for i = 0,1, . . - ,  no, and 
n = 0,1, .--, and since p'~ ~ p, we have p(p, Fg,) = 0. Thus p e Fg~, i = 0,1,- . . ,  no, 
which is incompatible with the fact (']7°__ o Fk° = 0 (by the definition of  S j). 

It  follows by (5) that 
m F (6) Let Y be a closed subset of  a compact space Z and let Y c [.Jk=O k, where 

F k are closed sets such that any different n + 1 of them have an empty intersection. 
Replacing each F k by its e-neighborhood/(16) Gk = S(Fk,e) (in Z), where 2e < 2, 

we obtain an open (in Z) covering ~ = {Gk} of Y, such that for the family {Gk} of  
closures of Gk, any n + 1 different sets G~ have an empty intersection(17). 

(14) See [9], p. 60. 
(15) This is a standard proof and is given here for the sake of completeness only. 
(16) An e-neighborhood of a set F is by definition the union over all p e F  of the sets 

Sp = [z;q(p,z)< ~:zeZ] 
(17) For a proof of (6) see also [14], p. 414, Lcmma 2 and [10], p. 257. 
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Another  consequence o f  (5) is; 
(7) I f  the closed sets F o, F1, "",Fro in a compact  space Z have an empty  inter- 

section then there exists a number  e > 0 such that  no  set o f  diameter  < e has a non 

empty intersection with each o f  the sets Fo, F I , ' " ,  F, , .  

Indeed, it suffices to  take e = 2 and to apply (5). 

We shall now give some properties o f  coverings o f  simplexes. 

Let tr S = (Po, "", Ps) be a closed s-dimensional simplex with vertices Po, P l , ' " ,  Ps 

in the Euclidean s-dimensional space E ~ and let f :  a s ~  Z be a homeomorph i sm o f  
tr ~ into a space Z. Let tr s - l . ,  denote the (s - 1) dimensional  closed face o f  tr S 

opposite to the vertex Pi ~ trS, i.e. a s-  ~ '~ = (Po , ' " ,  Pi-1,  Pi+ D ' " ,  Ps), i = O, 1, . . . ,  s, 
and let z ~ = f ( t r  s) and z ~-1'i =f( tr~- l . i ) .  Then z ~ is a curvilinear simplex with 

vertices qi =f(P~)  and ( s -  1)-dimensional faces z ~-1'~, i =  0, 1,-.-,s.  Since f is a 
homeomorph i sm and ,-.s .~- 1 ~ ~ s ~s- ~,~ [ i~=oa = ~, we have that  I 1i=o # ~. Thus 
applying (7) with m = s to the closed sets F i = z S- ~'~, we find that  there exists a 

number  e > 0 such that  no set with diameter < e intersects each o f  the laces z s-  i.~. 

(8) Let e > 0 be a number  such that  no set with diameter < e intersects each 
face z S-l ' i .  Let  further z S / I,, F = k.;k=O k, where F k are closed sets with diameters 

6(F~) < e, k = 0, 1,-.-, m. Then some s + 1 sets Fko, "" ,Fk ,  have a non empty  
intersection. 

Since tS(Fk) < e, no Fk containing a vertex qj o f  z S intersects the face zs-l.~ 

opposite to qj .  Since f is one-to-one,  no s e t f - l ( F k )  containing a vertex p~ o f  tr S 

intersects the face a s-~ ' j  opposite to pj. Now,  the sets f - ~ ( F k ) ,  k = 0 ,1 , . . .  m, 

cover the simplex a S and  are closed, s i nce f  is cont inuous.  Thus  applying the same 

procedure as in the p r o o f  of  [2, 24] in (['1], p. 194) we obtain  tha t  some s + 1 

s e t s f - ~ ( F ~ ) ,  j = 0 ,1 , . . . s ,  have a non empty  intersection. Hence also the sets 
Fk~, j = 0, 1, . . .  s, have a non  empty  intersection. 

IV. SOLUTION OF THE PROBLEMS FORMULATED IN II 

IV.1. An n-dimensional  absolute F~ and G~-space X and  its properties.  

Let tr ~ = (Po, P l , ' " ,  P,,) be the n-dimensional closed simplex in the n-dimension- 
al Euclidean space E" with vertices Po = (0, 0, . . . ,0) and p~ = (0, ... 0 ,1 ,0 ,  ... 0), 

i = 1,2,-.., n. (i.e. Pi is the point  in E "whose i-th coordina te  is I and a l l / o t h e r  
coordinates are 0). Let A = {a j}, j = 1,2, ..., be the sequence o f  points  o f  the 

fo rm a j = ( 1 / j ) ,  j = 1,2, . . -  on the real axis E l and let ao = 0 ~ E  1. Denote  by 
Fr(tr .) = U 7 = 0  tr,,-1,t the boundary  o f  the simplex a *. Let 

(9) X = (A x a ~) td [(ao) x F,'(tr~)] 

Then X c E ' + l a n d  the closure ~ o f  X in E n÷ ~ is 

.~' = (A  x o'") k3 [ (ao)  x ~ " ]  = I-A k.) (ao) ] x o" ". 

Since .~ is a compact  subset o f  E ~+~ (as a p roduc t  o f  two c o m p a c t  spaces 

/1 t.)(ao) and tr"), • is a compact  space, and since X can be written as a union 
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[(ao) x Fr(tr')] U [-I,.Jj~=l (ai) x ~"] of a countable number of  compact sets, it 
follows that X is an absolute Fo space• 

On the other hand the set 2 - X equals the interior of the simplex (ao) x tr ~. 
Since this interior is a union of compact sets, the set X -  X is an F# set and 
therefore X is a G0-set in 37. It follows that 

(ba) The set X defined in (9) is both an absolute F ,  and G0-space. Evidently, 
d imX = n. 

We shall now show that 
(b~) For each compactification (f, X*) of X we have dim IX* - f ( X ) ]  > dim X = n. 
Indeed, suppose to the contrary that dim IX* - f ( X ) ]  < n - 1 < dim X and 

n n-- 1,i 0""-- 1 , i ] ,  consider the sets z j= f [ (a~)x  a"], j = 1,2,. . . ,  and z~ = f [ ( a j )  x 
i = 0,1, .--, n, j = 0 , 1 , . - - .  Since a j ~ a o  for j---} oo, it follows that for every 
i = 0 , 1 , . . - , n ,  dist{[(a h x a " - l ' q ,  [(ao) x c r " - l " ] } ~ 0  for j--} ~ ,  where 
d i s t (A,B)=  max[supx~ap(x,B), sup,,~p(A,x)] is the distance of the sets A 
and B in the sense of  Hausdorff(xs). Since f : X - } X *  is continuous and 
[A U (ao)] x a "- 1.i is compact it follows easily that 

( 1 0 )  • . - 1 , ~  . - 1 "  dlst(xj ,T o ' ) ~ 0  f o r j ~ o o  and each i = 0 , 1 , . . . , n .  

Now, the space X* being compact, there exists a subsequence {j'} of {j} such 
that the sequence of sets {~.,} converges to a continuum C = X*(~9). Writing j 
instead o f j ' ,  we have dist (~7, C) ~ 0 for j ~ oo. I f  there were C c~ [[,.ff= x z~] # ¢, 
then there would exist a point Yo and a sequence yj~ e xi~ of points, such that 
Yjk-~ Yo e ~o for k---} oo and some Jo. Then xjk = f - l ( y j k  ) ~ f - 1  (Yo) = Xo, which 
is, because ofxj~ ~ (aj~) x a "and x o e (ajo) x a", incompatible with the openness of  
(ago) x a" in the union [,.J~= 1 (a j) x a". It follows that C n [ [..J~= 1 zT] = ¢, and 
since the set U~=oZg -1'I is an (n-1)-dimensional  compact subset of C, it 
follows from the assumption dim IX* - f ( X ) ]  < n - 1 and from Corollary 1 in 
([4], p. 32), that dim C < n - 1. Thus, by the definition of d,(Y) (cf. section III), 
we obtain d,(C) = 0. Hence, by (6), there exists for every e > 0 an e-covering of C 
by sets Gk open in X*, k = 0 , 1 , . - . , m  such that 

(11) Gko n dk, n . . .  n dk,, = ¢ for any set of subscripts/c o < kl < --- < k,. 

• n T n - 1  i Since [")~=o o • = ¢ we may, according to (7), choose for this covering an e 
so small that no Gk intersects each set z~ -~'~. Hence by (10) no set Gk intersects 

"-  ~'~, i = 0,1, . . . ,  n, for sufficiently large j. Let G = I, Jk%0 Gk. Since all the faces z~ 
C ~ G and dist (~,  C) -~ 0 for j -~ ~ ,  there exists a Jo such that z~- = G for j ~_ Jo. 
Fixing anyj----Jo, we find that the sets F k = z3 A ~k, k = O, 1, ...,m, satisfy the 
assumptions of (8) with s replaced by n and z by zj. Hence by (8) some n + 1 
sets Fko , ' " , fk , ,  and therefore also the sets Gko,-.., G k have a non empty inter- 
section, which is incompatible with (11). Thus (b~) is proved. 

Q8) See [8], p. 106 
Qg) See [9], p. 110. Also [16], p. 11. 
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From (bl), (bl') and (3) we obtain 

THEOREM 2. The set X defined in (9) is both an absolute F~ and G#-space of 
the second kind and of dimension n. 

This theorem gives an answer to problem (al). 

IV. 2. On a problem of A. Lelek. The following problem P. 313 was formu- 
lated by Lelek in [111, p. 34). 

Does there exist, for each absolute G#-space X of the second kind with finite, 
positive dimension, a compact space Z with positive dimension, such that X 
contains a topological image of  the set N x Z (N being the set of irrational num- 
bers of  the interval J = [0,11)? 

A negative answer to this question was given in [121. Now it is easily seen 
that a negative answer to problem (a2) posed in section 1I contains, as 
a special case, a negative answer to the problem of  Lelek. (It suffices to 
take, in (a2) , n = dim X = 1.) We now proceed to prove that the answer to (a2) 
is negative. 

Indeed, let X be the space defined in (9). We shall show that there does not 
exist a space Z with dim Z = dim X = n such that N x Z has a topological image 
in X. 

Suppose, to the contrary, that such a space Z exists and let h : N x Z ~ X be a 
bomeomorphism of  N x Z into X. Fix a point 4 6 N. Then the n-dimensional 
space (4) x Z has a topological image in X. Now X being a countable union of 
compact disjoint sets (a j) x tr n and (ao) x Fr(~ ), j = 1,2, ..- and (4) x Z being 
n-dimensional,it follows(2°) that h [(4) x Z] has an n-dimensional intersection 
with some set (aj(¢))x tr n. This intersection, as n-dimensional subset of  tr ~, 
contains(21) an open subset of(aj(¢)) x tr ~. Since h is one-to-one, the sets 
hi(4) x Z 1 and h [ ( ~ ' ) x  Z 1 are disjoint for ~ ~ ~',4, 4 ' 6 N ,  and since N is 
uncountable, we get an uncountable family of  disjoint open sets contained in X, 
which is impossible. 

IV. 3. Two theorems on eompaetifieation. We shall now prove two theorems 
which will enable us to provide an answer to problem (c) and to construct, for 
any n = 1,2, .-., No, a n-dimensional space X which is not  locally compact at a 
single point and such that for each compactification ( f ,X*)  of  X we heva 

dim I-X* - f ( X ) l  > 1. 

THnOREM 3. Suppose that the space X contains a sequence {Ci}i=l, 2 .... of  
continua C i and a point p such that 

(cl) the sets Ci are closed and open in the union ~.J~°= 1 Ci and Ci n Cj = ¢ 
for i ~ j ;  

(z0) This is a consequence of the Sum Theorem for Dimension n, Cf. [4], P. 30. 
(22) This follows easily from Theorem IV, 3 in [4], p. 44. 
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(c2) there exists a number 6 > 0, such that 6(Ci) >__ 6 for each i = 1, 2,. . .  ; 
oo 

U, ol c , -  c ,  = (p) .  

Then X is not locally compact at the point p, and for each compactification 
( f ,X*) of X we have dim[X* - f ( X ) ]  > 1. 

Proof. Let Up be an arbitrary neighborhood containing the point p. We have 
to show that the closure Op is not compact. By (c0 and (ca) there exists a sequence 

oo of points p~ U~= t c~ such that p ~  p for i ~ oo and such that the sequence 
{P~}i=l,z .... has only a finite number of points in common with each C~. Thus we 
may assume that for each i = 1, 2,..-, we have p~ e Ct. Let S = S (p, r) be a spherical 
neighborhood of p with radius r < 6/2 contained in Up. Since pi ~ p, the sets 
C~ n S are not empty for i sufficiently large, and since C~ are connected, we obtain 
from (c2) that for these i; C~ n Fr(S) ~ ¢. Choose from each such set Ci n Fr(S) 
a point qi and consider the sequence {q,}. Since S = Op, we have {qi} = / ] p  and 
since q~ e Fr(S), it follows that p(q~, p) = r > 0. Now, since qi e C~ for i sufficiently 
large, (cO and (ca) imply that any convergent subsequence of {q~} tends to p, 
which is impossible because P(qi, P) = r > 0. Thus Up is not  compact. It remains 
to show that if ( f ,X*) is any compactification of X, then dim [X* - f ( X ) ]  > 1. 
For this purpose let us consider the sets XI = U i ~ l c i  u ( p )  and f (XO.  The 
closure f ( X O  = X* = X* is a compactification of X~. Let y be any point of 
X* - f ( X 1 ) .  Then the point y Cf(X).  Indeed, if there would exist a point x e X 
such that y = f (x ) ,  then we would have xCX1, since f is one-to-one. Now, 
y ef(X1)  implies that there exists a sequence of points x, e Xx such that f ( x , )  -o y. 
By the continuity o f f  - a we have x, -~ x e X - Xx. But by (ca) the set X1 is closed 
in X, and since x, e Xx it follows that x e X~. This contradiction shows that 
y Cf(X). Thus 

(12) [X~' - f ( X 1 )  ] N f ( X )  = [f(X1) - f ( X x ) ]  N f ( X )  = ¢. 

Let us take further r < 6/2 and construct (in analogy with the first part of the 
proof) points pi-~ p, Pt e Ci and qi e C~, such that P(P, qi) = r > 0 for i sufficiently 
large. Since X* =f (X1)  is compact andf(Cl)  c X* we can choose a subsequence 
of  the sequence {f(C~)} of continua converging(22) to some continuum C. Denoting 
the subscpripts of this subsequence by i we have therefore that dist [f(C~), C] ~ 0 
for i ~ oo. Now, since Pi -~ P and pi e C~, it follows that C contains the pointf(p) .  
If  C would reduce to this point f(p) ,  then ql e C~ would imply f (q~)~f(p) ,  and 
since f - 1  is continuous we would also have q ~ p ,  in contradiction to 
P(P, qi) = r > 0. It follows that C contains at least two points, and since it is a 
continuum we have dim C > 1. Therefore dim [C - (f(p)] => 1. 

(22) Seo [9] ,  p. 110. 
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Now, by (cl) we have C C ) f ( C i )  = ~J for each i = 1,2, . . . .  Therefore X * ~  X* 
and (12) imply that dim [X* - f ( X ) ]  > 1. Theorem 3 is proved. 

EXAMPLE 1. Let X = (ao) t.) [[,.J~= 1 (a j) x J ]  where ao = 0 and aj = 2-J+ 1 
j = 1,2, . . . ,  are real numbers on the real axis and J = [0, 1] (Figure 1). This 
1-dimensional space X is not  locally compact at the single point ao = 0, and by 

Theorem 3 dim IX* - f ( X ) ]  > 1 for any compactification ( f ,X*)  of X. It is also 
easily seen that X is an absolute Fo and G~-space and thus, by (3) and d imX = 1, 
we obtain that X is an absolute F ,  and G~-space of  the second kind. 

O O 0 4 0 3 0 2 O I 

Figure 1 

EXAMPLE 2. Let n = 2, 3,.--, No, and let X = (J~ - X1) L~ (O), where 

X l = { X ;  x = ( x l , x 2 , . . . , x n ) ,  x l = 0 ,  O < x i < l ,  for i = 2 , 3 , - - . , n }  and 
O = (0,0,.--,0). (If n = No,J n is the Hilbert cube). It is clear that d imX = n, 
and that X is not locally compact at the single point O. It is also easy to construct 
a sequence Ci of continua in X, such that the assumptions of Theorem 3 be 
satisfied for the pooint p = O. Hence d i m [ X * - f ( X ) ] ]  > 1 for any compacti- 
fication (f ,X*) of X (for n = 3, see Figure 2). 

Bt 

c 

/ 
Figure 2 

, By Theorem 3 for each compactification ( f , X )  of this full cube X excluding the full square 
OABC but including point O, dim IX* -- f (X)]  --> 1. 
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Let us now show that 
(d) If  the set X is a dosed subset of space Y and for each compactification 

(g,X*) of X we have dim I X * -  g(X)] > k, then for each compactification 
(f,  Y*) of Y we have dim iY* - f ( Y ) ]  > k. 

Proof. The closure (in Y*)je(X)= X* of f(X) is a compactification (f,X*) 
of X and therefore by assumption, we have dim[X* - f ( X ) ]  > k. Now, it is 
easily seen that~f(X) n f ( Y  - X) = ¢. Indeed, otherwise we could find a point 
xo e Y - X and a sequence of points x n ~ X such that f(xn)...*f(xo). But s incef  is 
homeomorphism on Y there would be x,,--, x o, which is incompatible with the 
closedness of X in Y. From f(X) n f ( Y -  X ) =  0, we obtain 

X* - f ( X )  c Y* - f (Y) ,  

and therefore dim [Y* - f  (Y) ] > k. 
As a consequence of (b~) and (d), we have the following answer to problem (c): 

THEOREM 4. If  space Y contains topologically the set X defined in (9) and X is a 
closed subset of  Y, then for each compactification (f, Y*) of Y* we have 

dimlY* - f ( Y ) ]  > n. 
(The case n = 2 is illustrated in Figure 3). 

B 

o 

A 
Figure 3 

According to theorem 4, for each compactification (f, Y*) of this tu[1 cube Y excluding 
the interior of the square OABC (but including OA, AB, BC and CO) dim [Y*--f(Y)] _>-- 2. 

IV. 4. A weakly infinite-dimensional absolute F~ and G~-space. 
As stated in (3), a finite dimensional absolute G~-space X is of the 

first kind if and only if there exists a compactification (f,X*) of X such 
that  dim IX* - f (X)]  < dimX. 
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We shall now show that  the above condition is not  necessary for infinite dimen- 
sional spaces. More precisely, we shall construct an absolute F ,  and G6-space 
of the first kind which is weakly infinite-dimensional and such that  for each 
compactification ( f ,X*)  of  X we have d i m [X *  - f ( X ) ]  = m.  Let us take, for 
fixed n, the set A, of  points x,  ,, = 2-"  + 2 - " ,  m = n + 1, n + 2, ..., on the real 

axis. Define X .  = (A, x tr") U [ (2-")  × Fr(tr")]. where a" is an n-dimensional 
~o X closed simplex with diameter 6(tr")= 2 -" .  Let X = 0 , = i  ,. 

The set X can be considered as a subset of  the Hilbert cube jSo, and its closure 

)? is ) ? =  [.J,~=lx, w [ U ~ = I  (2 -" )  x Int(tr")] u ( O )  where In t a"  = tr" - Fr(a") 
and 0 = (0, 0, . .-)  is the point  all whose coordinates are zero. It is also easily seen 
that  )? may be written in the form U~=a  )~. u (0), where )~, = EA n u (2 -n)] X 0 "n. 

Since )? is a compact  space and X is a countable union of  compact  sets, we find 
that  X is an absolute F,-space. Further, we can write each set (2-")  × Int(a")  

as a union (_Jl =°°x F7 of compact  sets FT, i = 1,2,- . . .  Thus 

n = l  i = 1  

is an F,  set and thus X is an absolute G~-space. Moreover,  the sets 

are open in 37, dim [Fr(Gs) ] < s and (']~= i G~ = X. Hence, X is an absolute F~ 
and G~-space of  the first kind. By the defni t ion of X, it follows that X is a weakly 
infinite-dimensional space i.e. d i m X  = oo(22). 

We shall now show that  for each compactification ( f ,X*)  of  X we have 
d im[X*  - f ( X ) ]  = m. For  this purpose, let us note that  the set X .  i~ homeo- 
morphic with the space defined in (9), and hence by (b'l) we have '  

dim IX* - f ( X . ) ]  > d i m X .  = n 

for each compactification ( f ,X*)  of  X,. Now it is easily seen that X .  is a closed 
subset of  X. Thus, applying (d) for X = X ,  and Y = X, we have 

dim [X* - f ( X ) ]  > n. 

Since n is arbitrary, it follows that dim [X* - f ( X ) ]  = or. 

Acknowledgment. The author is indebted to Mr. E. Goldberg for his kind 
help in editing this paper. 

(22) For weakly infinite-dimensional spaces X, dim X = a~ is sometimes written instead 
of dim X ---- oo. 
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